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APPLICATION OF TWO-DIMENSIONAL DISCRETE-ORDINATES
ME'rHOD TO MULTIPLE SCATTERING OF LASER RADIATION

I. INTRODUCTION

Light propagation through an optically thick particulate medium is basically a
- multiple-scattering problem in which rays or photons traverse a medium of scatterers and
.* undergo many scattering events before escaping. A natural framework to deal with this type of

problem is provided by the theory of radiative transfer. The linear Boltzmann equation - in the
context of radiative energy also termed the "equation if transfer" - governs the radiation field
in a medium that absorbs, emits, and scatters radiation.

The complexity of the equation of transfer forces one to implement numerical
methods of solution. Such methods seek to introduce approximations that convert the integro-
differential form of the equation of transfe into a system of algebraic equations that is
amenable to solution by a digital computer. The most direct procedure is the discrete-
ordinates approach in which the radiance distribution function I( , ,? ) is replaced by a discrete
set of values at a discrete set of phase space points ('Fil, Ak). The derivatives and integrals
appearing in the equation of transfer must also be re~laced by a corresponding discrete
representation using finite difference and numerical integration schemes. In this way one
arrives at a set of algebraic equations that can be solved by using standard numerical algorithms
on a digital computer.

Unfortunately, such a calculation becomes an immense undertaking if only a "brute
force" discretization of the equation of transfer is employed. For example, a typical mesh size
of 100 by 100 by 100 space points, 10 wavelength groups, and 10 discrete angle would yield an
extremely large set of simultaneous algebraic equations involving at least 10 discrete phase
space points, which is a rather formidable task even on the CDC-7600 or Cray-1 computers.

The discrete-ordinates method is discussed in detail in references 1-5. In the
context of neutron tragsport theory, a comprehensive treatment is contained in the monograph

*" of Bell and Glasstone. Modern neutron transportrethods have only recently been applied to
atmospheric radiative transfer problems by Gerstl. Following reference 5, we summarize the
main features of the method:

(a) The solution of the transfer equation may be derived explicitly and therefore
the intensity and flux computations do not only depend on the total optical depth of aerosol
layers.

(b) The method yields the radiation field at all spatial locations as well as the
*. reflection and transmission without additional computational effort.

(c) The computer time required to calculate intensity and flux is relatively small as
compared with other techniques.

For two- and three-dimensional geometries, the solution of the discrete-ordinates equations
becomes increasingly complex. Extensions from two to three dimensions result in severe
computational problems because of the sheer size of the system of equations rather than any
basic complications in numelical solution algorithms from the added dimension. A discrete-
ordinates code THREETRAN which is capable of treating three-dimensional geometry, exists
only in an experimental version.

7



When looking for rigorous solutions to the problem of light scattering and
propagation in dense aerosols, it thus becomes imperative to explore the usefulness and the
range of applicability of the existing two-dimensional transpor codes. We note that r1 iative
transfer in two dimensions has earlier been studied by Fowler and yfwler and Sung. The
purpose of this paper is to apply the two-dimensional code TWOTRAN to the description of a
laser beam scattered (reflected) from a fixed target. This is obviously relevant to the

., evaluation of the effectiveness of electro-optical systems under aerosol-loaded and adverse
weather conditions. After summarizing the main features of the TWOTRAN code and the
solution 1 llgorithm in section 2, we make use in section 3 of the advantages of the delta M

* method. In section 4, we describe our model scenario where a collimated laser beam
propagating in a homogeneous rural aerosol is subsequently scattered from an isotropic target.
The average intensity and Beer/Lambert correction factor are introduced in section 5. They

"* allow us to make a comparative study of results in the rectangular (x-y) and cylindrical (r-z)
geometries, which is contained in section 6. Section 7 is devoted to the discussion of the results
obtained, and conclusions outlining future lines of research.

Z. SOLUTION ALGORITHM

For calculations reported here, the general-purpose code TWOTRAN-II has been
adapted to radiative transfer calculations of a laser beam in a realistic aerosol medium.

TWOTRAN-H is a general purpose FORTRAN code that solves the two-dimensional
multigroup transport equation in (x,y), (r,OI, and (r,z) geometries. Both regular and adjoint,

*: inhomogeneous and homogeneous problems subject to vacuum, reflective, periodic, white or
input-specified boundary flux conditions are solved. General anisotropic scattering is allowed
and anisotropic inhomogeneous sources are permitted.

The discrete ordinates approximation for the angular variable is used in finite
difference form which is solved with the central (diamond) difference approximation. Negative
fluxes are eliminated by a local set-to-zero and correct algorithm. Standard inner and outer
iterative cycles are accelerated by coarse mesh which may be independent of the material
mesh. Our computations with TWOTRAN performed with a pointwise convergence criterion of
2 x IO- using 144 discrete directions (S and 42 by 4 mesh point required the running time of
1 .2-1.5 min on the CDC-7600 machine.

In the absence of volumetric sources, the equation of transfer to be solved is

-V~r,2) f at~r)Ir,2) = fY ) 2)(1

where
f t t is the volume extinction coefficient and I(r, 1) is the radiance distribution
function. In nuclear radiation transport terminology, as(r, -) is the differential-scattering-
transfer cross section, whereP is the cosine of the angle between the directions Wand 2 of the
incoming and outgoing pencils of radiation. In terms of os(r,^), the scattering pase function,
P(r, ), is given by

% P~r,) = oCr, )lo°rq) z

with the normalizaton

f P(r,P)d = 1 (3)

£ (r0)d = o(r) (4)
-$



'vher~ ,.(r) is the volumte scattering coefficient at locati')ii r.

In two-dirnensiiil, 4-y ml r-z geometries, the TWOTRAN codo requires the -,'ti -if
spatial meshes (xk~yj or (ri,,z4) andl 4isccrete directions I -Il We always choose tho bea :1 J.zj:;
in the y or z directi.o.as, in F aif r-z geometries, respectively. As the set ofl*_.!

*directions IiIis determined by the chjeof a Gaussian quadrature, thero xi!I be usual],, ,i,
direction available along the y or z axes. It is there-fore convenient to divide the t.-t.~1ii

*into twvo parts, the reduced I iand the diffuse radiance 1(1. The r.:!l tcotI radiance satis;Fies
*equatio-n (1) with the right-hanA side set equal to zAero-. 'it I e :-y georn-rv, for example, it is

Ir(~ ) =I(2,x - X/o Y 0) exp[- yt( 1X/ 5

fyo
Q.and Qyare the component:; of the vector Qiii th- plai' 'c-xr.

The diffuse radiance satisfies the equati.nz

2. flV1d(!r.g) + Ot(1r)Id(1r,2) = f oS(r'P)Id(rQ')C12' + Q(r,Q) '

where Q is the sj-)ir -- fvti im

Q(L2 f a (r,Ol)I .(rjl')d' (7)

,.~ ~rit'.1v the reducedN .ariance.

In order to obtain the solution for the diffuse radiance fromn the TWOTRAN program,'
bothar and Q should be represented by finite Legeridre polynomial expansions. The function

6r, 13 -vritten as

L 22 + 1 (r (2

* where the alai~lceV~irt are assume-d to be known. To write -1:1. t L 'isiL for

the source funrction 0, we take the case of rectauigular x-y geometry as an example. For a
* colli nat.-M !,iser beam with the spatial shape described by a 7'i:io~(-x) at y 0

I(X,yOf) - (9)

b1 virtue of equation (5) the r'.i11 -I radiance becotnes

y
I .(,r) S~)62 )expt- at(Y)d (10)

Fluati-n (7) now yields

Q~r,) =F(X)a (1,Pl-S)exp[- f at(x,y')dy'J (l
0

Vi ii eviicb'nt bv inspection of equations (8) and (11), th', .- Cpris1i.), of tie source
*fjnetion involves the series expansion of equatioi (11) 'vith 'i C-. Legendre polynomials PAIS))h

takn *t he rgmen Y (si ). For strongly asymmetric phase fuutintl computationa
difficulties arise becati-, sucl phase functions -Avilot lie represented by polynonials or 11eV

* degree. A way out of the predicanun!jt is the delta M method, which -Ae will nowv discuss inth
* context of the TWOTRAr4 transport code.

9



3. THE TlELrA M METHOD FOR THE TWOTRAN CODE

The delta M method, whichi relies essentially on matching the first ZM phase
function moments and using a Dirac delta funcj on representation of forward scattering, is an
extension of the 6- Eddington approximation. The method has rjently been disc'issel ii
connection with the scaling group of the radiative transfer equation. In order to aiapt the
delta M method for our purposes, we note that the only physical quantities required to run the
TWOTRAN code are the expansion coefficients a s in equation (8) and the extinctioi
coefficient 0 t at each mesh side. WNhen the phase function is approximated by a Dirac .1elt'i
function forward peak and a (2M - 1)-term expansion, the functio, 0. in equation (8) becomes

*"" 2M-1l~l *s~r ,) : Z 22 + I £

. _47 (!)Pi( ) (12)
1=0

vhere for highly asymmetric phase functions the number ZM-1 will be much smaller than L.
The condition that the first (ZM-l-phase-function moments h i. matched exactly leads to

asCr) : A( r -f (13)

with

f ZM (r) (14)

Since the extinction coefficient transforms as

*0at =  
t  fa , (15)

the new equation of transfer for the transformed radiance 1* becomes

_.V + t : f s(_r,C)I (r,fl')dil' (16)

Thus, by comparing eq ration (16) vith equation (1), xe see that the delta M method does not
change the functional form of the traasfer equation.

Actually, as explained in section 2, ve solve the equation of transfer for the diffuse
radiance. This is obtained from equation (6), in which the a s and t have been transformed

-. accordiig to eq-iations (12) and (15). The reduced part of the radiance is still given by a simple
analytic expression, obtained by combining eqpiatios (5) an ( S):

ri= rieXp[ f (fa)(x - Y'l I0 y')dy' (17)
y 0

Tor a hoi; .geneous medium, with the collimate,l , ')i a ,'opagating along the y

axis, equation (17) simpifies to
* 0

Iri =ri exp(fOsY) (18)

Therefore, from the approximate equality

* (19)

Iri I d  I ri i d

io 10
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Sd exp(f 0Y) 1

Equation (20) enables one to evaluate the multiple-scattering corrections to the exponential
* decay expressed by the Beer-Lambert law.

• 4. MODEL SCENARIO

In this section we describe the results pertaining to a simple scenario in which the
scattering medium is for-ned by a homogeneous distribution of 99% relative hjunidity rural
aerosol. The rural model, as developed by the Air Force Geophysics Laboratory, is intended

:. to represent the aerosol conditions one finds in continental areas which are not directly
influenced by industrial aerosol sources. The optical characteristics of the medium are

" generated with the aid of the AGAUSX code, as described in references 16 and 17. Figure A-I
(appendix A) shows relative locations of the laser source and the isotropically reflecting target

' in the x-y (r-z) plane. The x (r) axis, named also "height", is chosen perpendicular to the surface
"-" of the earth, while the y (z) axis, named "distance" is taken along the axis of symmetry of the

laser beam. In r-z geometry, the medium has an azimuthal (rotational) symmetry around the z
axis. The symmetry condition in x-y geometry may be illustrated by imagining that the medium
is infinite in extent in the direction perpendicular to the x-y plane. Both the x (r) and y (z)
directions are divided into six coarse mesh cells whose boundaries are given by x (r) = 0.0, 0.002,
0.010, 0.050, 0.8, 1.0, 2.5 kin, and y (z) = 0.0, 3.0, 3.8, 4.0, 4.006, 4.106 and 4.4 km. In addition,
each coarse mesh cell is subdivided into fine mesh cells of equal width. In the x (r) direction,
the sequence Z, 8, 10, 10, Z, 10 specifies the number of fine meshes per coarse mesh. The
corresponding numbers in the y (z) directions are 20, 8, 5, 2, 4 and 3. Thus the x-y (r-z) plane
has been covered by 42 x 42 fine mesh cells with unequal sides. In x-y geometry, the
coordinates of the laser source are xo = 1.5 m and yo = 3.0 km. The source emits a Gaussian

*collimated beam with the radiance distribution for y = yo given by the formula

= 22( 2 2-' (x,yo,) = FI(n / )exp[-(X-Xo) /W60 - (Zl1)

where F is the total energy of the beam, and 6 denotes the Dirac delta function. In realistic
situations, one usually deals with a pulse source. Typically, the emitted pulses are of I "A.v

* power and Z0 nsec duration. We thus set F = 2 x 10 J per pulse and take w = 0.5 m. As the
". distance between the source and the target is equal to 1 kin, a ?oint source having the

divergence of I mrad would produce a spot of I m in diameter at the target's location. The
collimated Gaussian beam with half width w = 0.5 can therefore be viewed as a beam equivalent
to that produced by a divergent point source, at least as far as the target illumination is

. concerned. The target, with assumed reflectivity r = 0.5, reradiates the incident beam
* isotropically generating a diffuse radiation field in the x-y plane. The ground reflectivity
" (surface albedo) for x = 0 is assumed to be rg = 0.1. In r-z geometry, the radiance distribution
- function in the plane z z is given as

J0

I(r,z.,6) - exp(-r 2/w2)6( - (ZZ)
7rw

Equation (ZZ) implies that the beam axis coincides with the z-axis. As before we take zo = 3 km

and suppress the ground reflectivity rg. For rectangular x-y geometry, as the beam is parallel
to the ground surface x = 0, the exact value of r has only a negligible effect on the results of
our calculations. g

".I



We choose the concentrition of the aerosol particles to be described by the number
denzjty of 50,000 particles per cm . This corresponds to the extinction coefficient a = 1.32
km at the wavelength A = 1.06 pJM. For A = 0.55 Pm the extinction coefficient is 2.57 km.
The meterological (visual) range V, as defined by the Koschmieder formula

V= 3. 912
V = a(A=0.55 Pm) ' (Z3)

is then V = 1.52 km. As the number d.nsity increases to 100,000 particles per cm 3 , the
extinction coefficient becomes 0= 2.64 kn- and the meteorological range decreases to V = 0.76
km. The optical depths at A 1.06 pm for the distance between laser and the target (1 kin) in
the two cases considered are 1.3Z (for V = 1.52 kin) and 2.64 (for V 0.76 kin).

5. AVERAGE INTENSrFY AND BEER-LAMBERT CORRECTION FACTOR

The knowlege of the radiance distribution function I(r,6)allows us to introduce the
average intensity

Zn f (j)2(4

The average intensity does not, in general, represent the power flow but is proportional to the
radiant energy at a spatial mesh point r. In equation (24) and in the remainder of this work,
I(r,6) is the diffuse radiance at a two-dimensional spatial mesh point specified by the radius
vector r. The direct (reduced) beam intensity is omitted.

In order to investigate the relative importance of multiple-scattering corrections to
the Beer-Lambert law, we introduce a correction factor C which is entirely due to multiple
scattering. As the target reflects isotropi-ally, the reduced (unscattered) light intensity at a
distance from the target is

po e - .I

(25)

where P 0 is the power emitted by the target and T = O the optical depth between the target
and a receiver. The total intensity, a sum of the reduced and diffuse parts,

1 = r + 'd (Z6)

may be written in terms of a correction factor C to Beer-Lambert's law as

P e T  Po0--C'0 e "I  (Z7)

-1 (1 +C) so that Id 7 (7

Solving equation (27) for C, we obtain explicitly

;--'-"C - eI

2 (28)
P /(4nl2

As the diffuse intensity is created within the medium due to multiple scattering, the correction
*factor vanishes when only target reflection and absorption are considered.

1 -
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6. NUMERICAL RESULTS

The quantities of interest introduced in section 4, namely the average intensity,
scattered radiance and the B/L correction factor will now be computed in x-y and r-z
geometries.

6. 1 Rectangular Geometry.

rii Figure A-2 shows the average intensity distribution for multiply-scattered laser
*radiation corresponding to the visual range V = 1.52 km. In figure A-3, the same result is shown

with the spatial scale distorted. This displays detailed intensity variations. The distortion
represents every (nonequidistant) spatial fine mesh, as defined in figure 1 and section 4, as if it
were equally spaced. This feature causes the intensity peaks created by the aerosol environ-
merit and the target to be broadened and more easily recognizable in figure A-3.

In figures A-4 and A-5, the average intensity distribution is shown for a situation
correspynding to V = 0.76 km where the aerosol concentration is increased to 100,000 particles
per cm . The bimodal distribution in figures A-Z and A-3, with the target radiation being the

*dominant feature, becomes now a monomodal and the target is no longer easily recognizable.
This result shows that for sufficiently high aerosol concentration the dominant scattered signal

. corresponds essentially to the interaction of laser radiation with the aerosol environment.

Dropping thus the case of higher aerosol concentration, we list in tables B-1 and B-Z
(appendix B) the B/L correction factor for V = 1.52 km assuming a detector moving in a plane
parallel to the surface of the earth and pointing toward the target. In actual computations the
reduced intensity, as defined by equation (5), was obtained by executing our computer code in

. the case involving no scattering, i.e., setting the scattering coefficient of aerosols a = 0. The
* coordinates of the detector were determined by finding a ray, in the set of discrete directions,

which emanates from the target to cross the line along which the detector is assumed to move.

The use of the delta N4 method reduces significantly the computer time required to
obtain the radiance distribution function and the correction factors. When executing the
TWOTRAN code with the P 5 expansion (L= 5 in equation (8)], the CPU time was 90 sec for 1764

spatial meshes and 144 directions. Employing the delta 4 approximation results in the reduction
of CPU time down to 45 sec. Tie two columns of the correction factors in tables 3-1 and B-Z
refer to these two ways of computation.

6.2 Cylindrical Geometry.

Leaving unchanged other parameters, we proceed to the cylindrical (r-z) geometry
model. Figures A-6 and A-7 show the average intensity when the visual range is 1.5Z km, while

*i figures A-8 and A-9 correspond to the visual range of 0.76 km. As before, the target signal
*: becomes undistinguishable from the aerosol-scattered radiation as the visual range becomes
" . smaller than the distance between laser source and target. Tables B-3 and B-4 list the scat-
*. tered radiance and the B/L correction factors for the aerosol model with visual range V 1 1.5Z

km in the case of a detector moving along a line parallel to the beam axis.

13



7. DISCUSSION

Comparing the results contained in the figures A-Z to A-5 (x-y model) with those of
figures A-6 to A-9 (r-z model), we find the same characteristic features in the diffuse average
intensity. In particular, the scattered radiance from the target becomes negligibly small as the
visual range is shorter than the distance between the source and the target. We thus conclude
that the x-y and r-z geometry models are qualitatively equivalent as far as the target detection
is concerned. The infinite z direction in x-y geometry is only an expression of it symnmetry
condition and is not a perturbing factor as long as results are considered only in the x-y plane.

To the extent that the plots of average intensity show a qualitative agreement
* between the two geometries, insight into the quantitative results can be gained by inspecting

tables B-1 through B-4. For smaller optical depths, up to about T = 1.0, the agreement in the
calculated correction factors is indeed quite satisfactory and suggests a functional form of the
correction factor described by a universal function of only. As the distance between the
target and the detector increases, the observed discrepancies can be attributed to the ray
effect. This phenomenon, due to the basic discrete ordinate approximation itself, consists, in
essence, in solving the transport equation along a limited number of discrete characteristics
(i.e., rays). For the sake of illustration, let us consider an isotropic line source in a purely
absorbing medium. Then, clearly, the resultant analytical radiance distribution function will
possess azimuthal symmetry about the source line. But if we apply the discrete ordinates
method to this situation, the resultant radiance will consist of a stepfunction in the azimuthal
angle because only specific directions emanating from the line source will contain the source

* photons. Thus the discrete ordinates method approximates the azimuthally uniform radiance by
a discrete set of values at discrete azimuthal angles. The existing remedies like those trans-
forming the discrete ordinates equations to spherical-harmonic form, 1 ' will be an object of
future research.

In summary, we have applied the discrete ordinates code TWOTRAN to the problem
of laser heamn propagation and multiple scattering in dense aerosols. The delta M approximation

* has proven to be of definite advantage for our applications. The main result of our investigation
*consists in validating the use of an x-y geo:netry model in describing a realistic three-dimen-

sional scenario. This is achieved by computing the average intensity and B/L correction factor
in x-y and r-z geometries. The effect of aerosol concentration on the detectability of a target
follows independently of the choice of x-y or r-z geometry. In addition, as we have shown by
evaluating the multiple-scattering corrections to the Beer-Lambert law, the multiple-scattering
contribution to the target signature can be quite dramatic even for a moderate optical thickness
of the order of 2. As the optical thickness increases beyond 1 .5, the correction factor grows
very rapidly. The problem, however, in the context of the discussed scenario becomes less
realistic due to the decreased visual range.

Of definite interest would be a further study of the ray effect as el 3 as a
comparison of the resul~ obtained with the results employing the small angle andimf
liffusion approximations.
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Rural Aerosol
Wavelength, X= ..06,um
Visual Range =1.52km

Max. Intensit = 3.322-09

AA

Figure A-2. Normalized Average Intensity on a Real Scale Lattice of Partial
Mesh Points in x-y Geometry. Visual Range 1.52 km.
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Rural Aerosol
Wavelength, X= 1.06gm
Visual Range = 1.52km

Max. Intensity = 3.32E-09

C4,

- L

.Z92

1~

Vi

"I..

Figure A-3. Normalized Average Intensity on a Distorted Lattice of Spatial
Mesh Points in x-y Geometry. Visual Range 1.5Z km.
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Rural Aerosol
- Wavelength, X= 1.O6ttm

Visual Range =0.76km

Max. Intensity =5-29r-1O

VVo

Figure A-4. Normalized Average Intensity on a Real Scale Lattice of

Spatial Mesh Points in x-y Geometry. Visual Rlange 0.76 km.
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]Rural Aerosol1
Wavelength. A= 1.O65tm
Visual Range 0.76km

Max. Intensity =5.29E-10

* Figure A-5. Normalized Average Intensity on a Distorted Lattice of
Spatial Mesh Points in x-y Geometry. Visual Range 0.76 km.
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Ot Rural Aerosol
Wavelength, X\= 1.06gm
Visual FRange = -~m

Max. Intensity =1.05E-06

Figure A-6. Normalized Average Intensity on a Real Scale Lattice of
Spatial Mesh Points in r-z Geometry. Visual Range 1.52 km.
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Rural Aerosol
Wavelength, X= 1.O6/im
Visual Range = 1.52km

Max. Intensity = 1.05E-06

'V 0

* Figure A-7. Normalized Average Intensity on a Distorted Lattice of
Spatial Mesh Points in r-z Geometry. Visual Range 1.52 km.
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o Rural Aerosol
Wavelength, X= 'LO6/-tm
Visual Range =0.76km

Max. IntenLLsity Y %. .-__

00

Figure A-8. Normalized Average Intensity on a Real Scale Lattice of
Spatial Mesh Points in r-z Geometry. Visual Range 0.76 km.
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]Rural Aerosol1
Wave length, X= 1.06,i-tm
Visual R-ange =0.76km

Ca Max. I ntens ity = 3.78.- 7

4

Figure A-9. Normalized Average Intensity on a Distorted Lattice of
Spatial Mesh Points in r-z Geomnetry. Visual Range 0.76 km.
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APPENDIX B

TABLES

Table B-1. X-Y Geometry: Target Coordinates x 0.001 kin,
y = 4.000 kin: Detector Height = 0.200 km

Detector's Optical Radiance Beer/Lambert
y coordinate depth correction factor

P5 Delta -4

km w.m -Z. sr- 1

2.515 1.978 2.979Z x 10-1  1.14 1.46
3.529 0.675 1.3051 x 10- 1 0.37 0.43
3.767 0.406 1.8615 x 10-1 0.29 0.29
3.822 0.353 3.0306 x 10-1 0.21 0.21
3.867 0.317 3.8526 x 10-1 0.15 0.15

Table B-2. X-Y Geometry: Target Coordinates x = 0.001 km,
y = 4.000 kin: Detector Height = 0.500 km

Detector's Optical Radiance Beer/Lambert
y coordinate depth correction factor

.. _P5 Delta -4

km w.m -2. sr- 1

2.824 1.687 2.9857 x 10-2 1.44 1.72
3.556 0.883 1.1178 x 10-1 0.74 0.77
3.668 0.792 1.0735 x 10-1 0.64 0.66
3.904 0.67Z t.9973 x 10-  0.32 0.38

Table B-3. R-Z Geometry: Target Coordinates r = 0.0 kin,
z 4.000 kin: Detector Height r = 0.200 km

Detector's Optical Beer/Lambert
y coordinate depth correction factor

PS Delta -4

km w.m -2 . sr-1

2.q59 1.398 8.9695 x 10-2  0.64 0.83
3.699 0.477 5.1730 x 10-1 0.38 0.41
3.775 0.397 9.4538 x I0-1 0.27 0.28
3.829 0.348 2.8858 x 10+0 0.13 0.14
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Table B-4. R-Z Geometry: Target Coordinates r =0.0 kmn,
z =4.000 kin: Detector H-eight r =0.500 km.

Detector's Opia Beer/Lamnbert

y coordinate depthaRdac cork ection factor
_________ ________P5 _Delta -1

km w.M 2 . sr'I

1 1-398 3.496 2.6520 x 10-3  1.66 Z.79
2.898 1.596 3.8658 x 10O-2 0.85 1.9Z
3.247 1.193 2.53189 x 10-1 0.69 0.82z
3.437 0.993 2.Z313 x 10-1 0.55 0.65
3.571 0.869 1.6951 x 10-1 0.50 0.61
3.682 0.782 Z.2435 x 10-1 0.36 0.44
3.787 0.7 17 2.2986 x 10-1 0.35 0.41
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